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The equilibrium configurations of a liquid spreading on a rough solid surface are 
derived by making expansions in terms of the characteristic slope E of the surface 
roughness, which is assumed to be very small. It is also assumed that the microscopic 
contact angle is a constant and that the liquid-air interface is planar a t  large distances 
from the contact line. Expressions for the value of the macroscopic contact angle and 
a discussion of the existence of contact-angle hysteresis and of stick-jump behaviour 
of the contact line are given for (i) surfaces with parallel grooves, (ii) surfaces with 
periodicity in two perpendicular directions and (iii) general non-period surfaces. 

1. Introduction 
It is known that the roughness of a solid surface has an important effect on the 

spreading of a liquid on that surface. For example, certain types of roughness can 
have a strong directional influence on spreading, as has been demonstrated 
qualitatively by Trillat & Fritz (1938), Parker & Smoluchowski (1945), Bikerman 
(1950), Bascom, Cottington & Singleterry (1964), Oliver & Mason (1977) and Oliver, 
Huh & Mason (1977). A simple relation between surface roughness and the value of 
the contact angle (defined as the angle between the solid-liquid and liquid-air 
interfaces) was derived by Wenzel (1936) using an energy-conservation argument. 
However, he assumed that the value of the contact angle was a constant independent 
of the motion of the contact line (defined as the line where the liquid-air and solid 
surfaces meet), whereas it is well known that for an advancing contact line the value 
of the contact angle is greater than that for a receding contact line. This phenomenon, 
known as contact-angle hysteresis, may result from the roughness of the surface or 
from variations in the chemical nature of the surface from one position to another. 
Johnson & Dettre (1964) and Huh & Mason (19774 examined the possible axisym- 
metric equilibrium positions of a drop resting on a horizontal surface with roughness 
in the form of a series of concentric circular grooves. They showed that if the local 
microscopic contact angle (i.e. the angle between the local solid-liquid surface and 
liquid-air surface at the contact line) was taken to have a constant value a,,, then 
there are in general many possible equilibrium positions of the drop. They deduced 
that this would result in contact-angle hysteresis, and also that the forward or 
receding motion of the contact line would not be steady as the drop volume was slowly 
increased or decreased. Instead the contact line would progress in a series of jumps 
in a stick-jump behaviour. The details of what happens during such a jump is not 
predicted by the theory since fluid-dynamical effects must be important during the 
actual jumping process as the drop passes through non-equilibrium configurations. 

The question arises as to what happens when spreading occurs on more general 
types of rough planar surfaces. It is this which we will attempt to answer in the 
present paper. We will assume, as did Huh & Mason (1977a), that in the spreading 
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process the microscopic contact angle has a constant value a,. However, in making 
this assumption it must be admitted that it is not known whether on a perfect surface 
which is flat and smooth and shows no chemical heterogeneity the contact angle takes 
a unique value. It has been suggested (Schwartz 1980) that an intrinsic contact-angle 
hysteresis may exist on even such perfect solid surfaces, while other authors (Huh 
& Mason 1 9 7 7 ~ )  believe that no hysteresis would be evident should the maximum 
lengthscale of the roughness be less than some critical value. Whatever the true 
situation may be, the assumption of a constant microscopic contact angle is 
convenient for examining the effect of surface roughness. 

As the contact line is made to move very slowly on the rough surface, we will 
calculate the possible equilibrium positions of the liquid-air surface and of the contact 
line. In particular, we calculate the value of the macroscopic contact angle j9, defined 
as the angle between the mean solid surface position and the liquid-air interface at  
a distance far from the contact line where the liquid-air interface is assumed to be 
approximately planar. The way in which the values of this macroscopic contact angle 
varies with mean contact line position as it slowly advances or recedes may then be 
related to contact angle hysteresis and the stick-jump behaviour (Huh & Mason 
1 9 7 7 ~ ) .  Thus by finding only equilibrium positions we avoid the problem of the 
singularity in fluid flow stress which exists a t  a moving contact line even for spreading 
on a smooth solid surface (Dussan V. & Davis 1974; Hocking 1976, 1977; Huh & 
Mason 1977b; Dussan V. 1979).  

Since it is very difficult to find the equilibrium shape of the liquid-air interface 
and the contact-line position for a general rough surface, we will assume that the 
characteristic surface slope E of the roughness is small, and will make expansions in 
terms of this parameter. Huh & Mason (1977 a )  made this same assumption for a drop 
of fixed volume resting on a rough solid surface, but were unable to find more than 
one possible equilibrium position of the system. The reason for this, as will be 
explained in detail in the conclusion of the present paper, is due to the fact that for 
many possible equilibrium positions to exist we must have ER B 1, where R3 is the 
drop volume and 1 the characteristic wavelength of the surface roughness (i.e. the 
characteristic lengthscale of the roughness measured parallel to the surface). Thus, 
since Huh & Mason ( 1 9 7 7 ~ )  considered the limit of E + O  with l /R  fixed, this condition 
is violated and so only one equilibrium position can be found and there can be no 
possibility of contact-angle hysteresis. In the present paper, however, we consider 
the situation in which, at large distance from the contact line, the liquid-air interface 
becomes planar so that we are considering drops of infinite size for which 1/R is zero. 
For such a case, the condition ER $ 1  is satisfied for any non-zero value of E ,  however, 
small, so that many equilibrium positions can be expected. 

The importance of an investigation into the effect of various types of surface 
roughness on the value of the macroscopic contact angle can be seen by considering 
spreading on a parallel grooved surfaced with surface elevation z given by 

2xx* 
z = EAsin- (1 .1)  U 

where the rectangular coordinates (x*, y*) are defined parallel to the mean solid 
surface. When the contact line is parallel to the grooves (figure 1)  the liquid-air 
interface is exactly planar so that the macroscopic contact angle /3 is therefore given 

dz 27cA 27cx,* p = a,- dz* = a,-€- cos- , 
U a 

where xz is the value of x* at the contact line. 
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FIGURE 1.  Liquid spreading on a solid surface with elevation z given as a function of position 
by (1.1). Contact line is parallel to the groove direction. 

a a  a a  

- 
FIGURE 2. Value of macroscopic contact angle /I as a function of contact-line position x: for the 

spreading situation shown in figure 1. 

Thus /3 is an oscillatory function of x:, so that if the contact line is advanced by 
increasing the liquid volume (which means that /3 cannot decrease) then on the 
(x*, P)-diagram shown in figure 2 we move from A to B with the contact angle 
increasing from /3, = a,, - e(27cA/a) a t  A to pa = a,, + e(27cA/a) a t  B ,  while the contact 
line moves only a small distance &. Since there is no equilibrium with p > pa, the 
contact line jumps from B to B,, sticks at B,, then jumps from B, to B,, etc. If a t  
C the liquid volume is reduced, we move from C to D with p changing from pa to 
/3, and the contact line only moving a small distance &. At D there is a jump from 
D to D,, where it sticks, followed by another jump from D,  to D,, etc. Thus we form 
the closed hysteresis loop ABCDA with advancing and receding contact angles pa 
and p, respectively. Thus we have both contact-angle hysteresis and the stick-jump 
phenomenon similar to that described by Huh & Mason (1977a). However, when the 
contact line is in any direction other than parallel to the grooves, then each 
equilibrium position is seen to be geometrically the same as any other (see figure 3) 
so that the value of the macroscopic contact angle /3 would be independent of 
contact-line position, indicating no contact-angle hysteresis. Thus this example 



4 R. G. Cox 

. .  
Solid 

FIQURE 3. Liquid spreading on a solid surface with elevation z given by (1 .1 )  and with the 
contact line making a non-zero angle with the groove direction. 

illustrates that one can have surfaces that exhibit contact-angle hysteresis only for 
certain contact-line directions. It is of interest to know how general this type of 
behaviour is. 

Thus, after describing the general theory in $2, we discuss in $3  spreading on 
surfaces for which there is periodicity along the contact line (such as would occur for 
the surface given by (1.1)).  This is extended to spreading on surfaces with periodicity 
in two perpendicular directions in $4, and to surfaces with non-periodic roughness 
in $5. Finally, in $6 the connection between the results obtained and Wenzel’s (1936) 
relation is discussed. In addition expressions are obtained for the energy released 
during any non-equilibrium jump of the contact line. 

2. Theory 
The spreading of a liquid on a rough solid planar surface is considered for the 

situation where the characteristic height h of the roughness is very much smaller than 
the roughness wavelength 1 (defined as the characteristic distance between roughness 
elements measured parallel to the surface). Thus, by taking a set of Cartesian axes 
(x’, y’, z’) with the 2’-axis perpendicular to the mean position of the solid surface (and 
directed away from the solid), the surface roughness of the solid may be expressed as 

Thus, if dimensionless coordinates (x, y, z )  are defined using 1 as the characteristic 
lengthscale so that z’ 

the surface elevation given by (2.1) may be written as 

(2.2) 

= € a x ,  Y), (2.3) 

X’ Y! 
x = T )  Y’T, z = d ,  

where 5 is of order unity and where the characteristic surface slope 

h 
€ E - < l .  1 (2.4) 
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FIGURE 4. Definition of axes for spreading on a plane solid surface (for which E = 0). 

We suppose that the liquid-air interface of the spreading liquid moves so slowly that 
the interface moves from one static equilibrium position to another. Furthermore, 
as mentioned in $1, we assume that the liquid-air interface is planar at large distances 
and also that the contact angle between the solid and liquid-air interfaces at their 
line of intersection (the contact line) ib a constant a,. The value of this constant a, 
should differ from both 0 and K by an @mount large compared with E since otherwise 
the contact line will no longer be a sihgle almost-straight line, there possibly being 
islands of solid surface appearing through the liquid-air interface. 

When the solid is smooth (i.e. when E = 0) the liquid-air interface is a plane which 
makes an angle a, with the solid surface. Without loss of generality, we take the y-axis 
in the solid surface parallel to the,contact line, which we suppose is at x = x, (see 
figure 4). A new dimensionless set of coordinates ( X ,  Y ,  2) is then defined with origin 
on the contact line x = x, and X-axis along the liquid-air interface perpendicular to 
the contact line. The Z-axis is then taken to be perpendicular to the liquid-air 
interface and directed into the liquid (so that the Y-  and y-axes are then parallel). 
The (X, Y ,  2)-coordinates are then related to the (2, y, z)-coordinates by the relations 

X = - (x- 5,) cos a, + z sin a,, 

2 = -(x-x,)sina,-zcosa,. 
y =  y, 

For a rough solid surface for which E is small but non-zero, we determine the 
position of the liquid-air interface as an expansion in terms of the small parameter 
E as 

2 = Efi(X, Y)+E2fi(X, Y ) +  .... (2.6) 

There can be no terms in e0 in this expansion since as B + O  the liquid-air interface 
is expected to tend to 2 = 0, the solution for the smooth surface. Since this liquid-air 
interface is assumed to tend to a planar surface a t  large distances (i.e. as X+oo), 
its equilibrium shape is such that the pressure difference across it is everywhere zero 
(assuming that the effect of gravity is negligible). Thus the liquid-air interface 
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FIQURE 5. Definition of axes for spreading on a general rough solid surface. n, and nL are respectively 
the unit normals to the solid and liquid interfaces at the contact line. a, is the microscopic contact 
angle and /? the macroscopic contact angle. 

Z = Z [ X ,  YJ given by (2.6) must have zero curvature (i.e. zero invariant of the 
curvature tensor) for all X, Y ,  so that 

where H = { 1 + (gy + (#. 
Substituting the expansion (2.6) into this equation and equating like powers of E ,  we 
find thatf,(X, Y) andf2(X, Y )  satisfy 

(2.8a, b )  

At the contact line (see figure 5 ) ,  where the solid surface (2.3) and liquid-air 
interface (2.6) intersect, 

- (x - xo) sin a, - ~ [ ( x ,  y) cos a, 
= efl( - (x - xo) cos a, + E ~ ( x ,  y) sin a,, y> 

+s2fa{-(z-x0) cos a,+e[(x,y) sin a,,y}+ ..., (2.9) 

where use has been made of the transformation (2.5). This equation (2.9) may be 
considered as giving the position x of the contact line for each value of y. Since the 
contact line is a t  x = xo when E + O ,  we assume the solution of (2.9) to be of the form 

x = xo + eg1(y) + “gz(y) + . . . . (2.10) 

By substituting this value of x into (2.9) and expanding [(x, y) in a Taylor series about 
x = x,, we see, by equating like powers of E ,  that g,(y) and g2(y) are 
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The surface elevation z at the contact line is sc(x,  y), where x is given by (2.10)-(2.12). 
Thus, by expanding this for small e ,  we find that a t  the contact line 

where 

z = eh1(y)+e2h2(y)+ ..., 
hl(Y) = e(xo,Y), 

(2.13) 

(2.14) 

Since the contact angle is assumed to take the constant value a,, it follows that 

ns*nL = cos a, (2.16) 

at all points on the contact line where n, and nL are unit normals to the solid and 
liquid-air surfaces respectively at  the contact line, both directed towards the air (see 
figure 5). 

The unit normal ns to the solid surface (given by (2.3)) has components 

relative to the (x,y,z) axes, while in a similar manner the unit normal nL to the 
liquid-air interface (given by (2.6)) has components 

relative to the (X, Y ,  X)-axes. By expressing n, in terms of this same set of axes and 
substituting into (2.16), we obtain the boundary condition for the liquid-air interface 
that is to be applied a t  the contact line at which for each value of y,x is given 
by (2.10)-(2.12) and z by (2.13)-(2.15). This boundary condition is then converted 
to one a t  the line X = 2 = 0 (or x = x,, z = 0) by expanding all quantities as Taylor 
series about this position. Thus, after a lengthy calculation, we obtain upon equating 
like powers of E ,  the boundary conditions for fl and f2 to  be applied at X = 0 as 

(2.19) 
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Thus, for any rough solid surface for which [(x, y) is known, the shape of the liquid-air 
interface (2.6) for any xo is found to order E by solving ( 2 . 8 ~ )  with boundary condition 
(2.19) and to order e2 by solving (2.8b) with boundary condition (2.20). 

3. Roughness periodic along contact line 
As an example we consider a rough solid surface in which the elevation [(x, y) is 

periodic with period b along the line X = Z = 0 (i.e. on x = xo, z = 0) ,  so that in the 
neighbourhood of the contact line [(x, y) may be expressed as the Fourier series 

It is therefore expected that the shape of the liquid-air interface would also be 
periodic in the Y-direction with period b. Thus f l ( X ,  Y )  in (2.6) must be periodic with 
period b whilst also satisfying ( 2 . 8 ~ ) .  It is therefore of the form 

fl(x, Y )  = z m (.. sin ~ 2nn Y + B, cos - "r 7 exp ( - y) + D X  + E,  (3.2) 
n = l  b 

where A, ,  A,, ..., B,, B,, ..., D and E are constants. 
The term D X  must be retained since we want to allow for the possibility of the 

macroscopic contact angle p (i.e. the angle between the liquid-air interface a t  X+ 00 

and the mean solid surface) being different from the value a. for a smooth surface. 
Since the liquid air-interface is given by (2.6) with f l  determined by (3.2), it follows 
that to order e + l ,  

p = ao-eD+ .... (3.3) 

E = O  (3.4) 

However, without loss of generality, we may take 

by suitably defining the value of xo for each liquid-air interface (see figure 5 ) .  By 
substituting the values of [ given by (3.1) and f i  given by (3.2) into the boundary 
condition (2.19) and equating Fourier coefficients, we obtain the values of the 
unknown constants in the expression (3.2) for f l ( X ,  Y ) .  In this manner, the 
configuration of the liquid-air interface is obtained correct to order ~ + l  as 

2nn Y 
b 

pk(xo) sin- 

2xnX 

where primes denote differentiation with respect to x. The macroscopic contact angle 
is thus 

p = ao-"q;(xo)+.... (3.6) 

From the expression (3.1) for the surface elevation, i t  is observed that the value 
(i3[/i3x)lx-zo of ac/ax averaged along the line x = xo is pL(z0), so that the macroscopic 
contact angle /3 may be expressed alternatively as 

p = a 0 - q  +... (3.7) 
ax x-xo 
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If the values of fl(O, y) obtained from (3.2) and of c(zo, y) obtained from (3.1) are 
substituted into the expression (2.11) for g,(y), the position of the contact line given 
by (2.10) is found correct to order e+l as 

pb(zo)-cot aopn 
b 

b 
q;(z,)-cot a,qn(zo)) COST} 2xny -qo(zo) cot a,] +.... (3.8) 

+ (2xn sin a, 
In  order to obtain the value of the macroscopic contact angle p correct to order 

e2, it is noted that since f z  satisfies the same equation asfl (see (2.8)) and must be 
planar as X +  co, the form of f2 must be the same as fl, so that 

2xnX f2(x, Y )  = E h n  sin - 2xn Y + Qn cos Fy exp (- 7) +RX, (3.9) 
n-1 b 

where Pl, P2, ..., Ql, Q2, ..., R are constants. The iralue of the macroscopic contact 

(3.10) angle is then p = ao-eqh(x,,)-e2R+ .... 

From (3.9) it is observed that the value of R may be expressed as 

R = ' f  b& 1 dY, 
b oaxx-0 

which, from the boundary condition (2.31), may be written as 

(3.11) 

(3.12) 

Substituting into this expression the values of 5 given by (3.1) and offi given by (3.2) 
with the known values of the constants, and performing the integrations, we obtain 
after a lengthy but straightforward calculation 

n-1  n-1 

f If where pn, pb ,  pi, qn, qn, qn are all evaluated a t  z = z,. Thus, from (3.10), it is seen 
that the macroscopic contact angle is 

B = a, - eq; + e2 

(3.14) 
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FIQURE 6. Definition of axes (z, y) and (z*, y*) in the plane of the rough solid surface. The 
liquid side of the contact line is to the lower left. 

As a specific example of a surface for which 5(x, y) near the contact line is of the 
form (3. l) ,  consider a sinusoidal parallel grooved surface with 

2KX* 5 = A sin - 
a 

(3.15) 

relative to  a fixed set of coordinates (x*, y*, z ) ,  where x*, y* lie in the surface, with 
the y* axis parallel to  the grooves. Then if the mean contact line makes an angle 8 
with the groove direction, and if (x, y, z)-axes are chosen as before with the y-axis 
parallel to the mean contact-line position x = xo, it is observed that (see figure 6) 

x* = x cos 8- y sin 8, 
y* = x sin 8+ y cos 8. 

Thus, by substituting into (3.15), we obtain 

2.n sin 8 2.n cos 8 5 = A sin (2, 'OS a x) cos (7 y) - A  cos ( a x) sin (F y) . 

This, when compared with (3.1) with b = a/sin 8, gives for 8 + 0 

pl(x) = - A  cos (2x T~ Ox), q,(x) = - A  sin (";s""), 

with all other p,(x) and q , (x )  zero; and for 0 = 0 

qo(x) = A sin ('x), 

(3.16) 

(3.17) 

(3.18) 

(3.19) 

with all other p,(x) and q,(z) zero. 

the value of the macroscopic contact angle given by (3.14) is 
When the mean contact line position is not parallel to the grooves (i.e. when 8 =l= 0) 

(3.20) 
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FIGURE 7.  Contact-line positions (projected in the (z*, y*)-plane) for the surface with dimensionless 
elevation 6 given by (3.15) with eA/a chosen to be 0.0278. For (a) the microscopic contact angle 
a0 = 30', while for (b) a = 150'. Situations for which the mean contact-line orientations are 0 = 30°, 
60' and 90' have been plotted. The liquid side of the contact lines is to the lower left. 

while the contact-line position to order e+', determined by (3.8), may be expressed 
as 

- tan-1 (E)} , (3.21) sin - 
{ a  

(Cot2 8 + cos2 a,)& ~ R X :  
x = X,-EA 

sin a, 

where x$ = x, cos 8- y sin 0 is the value of x* a t  the mean contact-line position 
x = 5,. For 0 < 8 < in,  the value of the function tanp1 appearing in (3.21) must be 
chosen to be in the interval (0, R). From these results it is seen that the following 
hold. 

(i) There is no contact-angle hysteresis or stick-jump phenomenon since p is 
independent of contact-line position (i.e. it  does not depend on x,). This result was 
to be expected since all contact-line positions are geometrically equivalent. 

(ii) For a microscopic contact angle a, < 90' the value of the macroscopic contact 
angle p is independent of contact-line orientation 8 and is less than that for a smooth 
surface by an amount of order e2. For a. > 90°, however, the value of p is increased 
by an amount of order e2. 

(iii) When the mean contact line is perpendicular to the grooves (i.e. 8 = goo), the 
contact line advances ahead of its mean position in the troughs for a,, < 90°, but 
advanced ahead of its mean position at the crests for a, > 90°. However, when the 
angle 8 the contact line makes with the grooves is reduced, the positions of maximum 
contact-line advance move towards the points of maximum uphill slope of the solid 
(i.e. the points on the contact line where ac/:/ax is a maximum). This is true whether 
a. is smaller or larger than 90' and is illustrated in figure 7. 

(iv) As 8+0 (i.e. when the contact line is almost parallel to the grooves), the 
wavelength alsin 8 of the contact-line shape tends to infinity. Since this is also the 
lengthscale of the disturbance along the liquid-air interface in the X-direction, it 
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follows that the smaller the value of 8, the farther away along the liquid-air interface 
from the contact line one must go before it becomes approximately planar. 

(v) The amplitude of the contact-line shape also tends to infinity (being x EA 
cot 8 x E A / ~ )  as 8+0. Since for the validity of the theory this must be very much 
smaller than the lengthscale a of the solid-surface roughness, we require 

8 9 EA/a, (3.22) 

which implies that  0 must be much larger than the maximum slope angle of the 
roughness. 

When the contact line is parallel to the grooves (i.e. when 8 = 0) ,  so that p,(x) and 
p,(x) are given by (3.19), the value of the macroscopic contact angle given by (3.14) 
is -_ 

cos x,) + O(E2), (3.23) 
2xA  

a 
p = a,-€- 

while the contact-line position (given by (3.8)) is 

x = Z , - ~ A  cot a, sin (:xo) -to(+. (3.24) 

Thus we observe for this case 8 = 0 that the following hold. 

pa being the maximum value of /I, namely 
(i) There is contact-angle hysteresis to order e + l ,  with the advancing contact angle 

2xA  
a 

pa = a,+€-, 

and the receding contact angle pr being the minimum value of p, namely 

2xA 
a 

PI. = a,-€-, 

(3.25) 

(3.26) 

(ii) The stick-jump phenomenon will occur, with forward jumps a t  
(2n/a) xo = (2r+ 1)  x for an advancing contact line, and receding jumps occurring a t  
(2x/a) xo = 2m for a receding contact line ( r  is any integer). 

These results are in agreement with the remarks made in the introduction concerning 
this case. 

(iii) The contact line is straight, as one would expect. 

4. Doubly periodic rough surfaces 
From the results obtained in $3, i t  is observed that the behaviour and movement 

of a contact line on a parallel grooved solid surface is very much dependent on its 
orientation relative to the grooves. In  order to see how general this type of situation 
is, we now investigate spreading of a liquid on a solid surface which is periodic with 
period a in the x* direction and periodic with period b in the y* direction so that 
C(Z*, y*) may be expressed by the double Fourier series 

w a ,  2xmx* 2 m y *  2xmx* 2xny* + b,, sin ~ cos - sin - 
b C =  m - o n - o  E 2 (a,,sin--- a b a 

2xmx* , 2xny* 2xmx* 2xny* 
b a 

sin - +a,, COY ~ cos-}, b + c,, cos ~ (4.1) a 
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in which, by a suitable choice of origin of the (x*, y*,  2)-coordinates, one may take 
do,, = 0 and therefore omit the case m = n = 0 from the double summation. I n  terms 
of the (2 ,  y, z)-coordinates used previously, this value of 5, by the use of (3.16), may 
be written as 

0 0 0 0  

5 = I: E {Pmn(x) sin 2n$mn Y + Qmn(x) cos 2n$mn Y 
m = O n - 0  

+ G n ( x )  sin 2 4 m n  Y +  C?mn(x) cos 2nGmn Y>> (4.2) 
where 

= B(amn+dmn) sin 2 7 ~ f ~ ~ x - 4 ( b ~ ~ - ~ ~ ~ )  cos 2zfmn X,  

(4.3) Qmn(x) = $(amn+dmn) cos 2 n ~ m n x + ~ ( b m n - c m n )  sin 2nimnx, 

pmn(x) = -+(-amn+dmn) sin 2 n ~ m n x + 4 ( b m n + ~ m n )  cos 2nxmnx, I 6mn(x) = .t(-amn+dmn) cos 2nxmnx+B(bmn+cmn) sin 2 n ~ m n x j  

and 
m s i n 6  n c o s 6  $,, = - m sin 6 n cos 6 

m c o s 8  n s i n 8  ~ m c o s 8  n s i n 8  

$mn = 7 +- b ’  -+q a (4.4) 

X m n  = ~ + ~ 

The value of the macroscopic contact angle p for a mean contact-line position a t  
x = x,, may be determined for this surface in a manner analogous to that discussed 
in $ 3  for a surface with a periodic variation along the contact line with 5 given by 
(3.1). Thus, in the present case, we take the value offl to be 

b X m n = - - -  b .  a a 

w w  

fi(X, Y )  = C C [ ( A m ,  sin 2n$mn +Bmn cos 2n$mn Y) exp ( - 2 ~ l $ ~ , l X )  
m - o n - o  

+{Amn sin 2nGmn Y +B,, cos 2nGmn Y) exp ( - ~ ~ I + ~ ~ I x ) I  + DX, (4.5) 

withf2(X, Y )  given by a similar expression. I n  repeating the analysis of $3 for this 
situation, care must be exercised since certain cases, for which 5 and fi take special 
forms, must be examined separately. These exceptional cases are as follows. 

( a )  Values of 6 for which 
\ I  

Nu 
Mb 

t a n 8  = f -, 

where N and M are positive integers (=+ 0), since there are then values of n and m 
for which either $mn = 0 or Gmn = 0. 

( b )  6 = 0 and 6 = in for which $mn = Gmn or $mn = -Gmn. 
I n  addition, terms for which either m = 0 or n = 0 in the double sums in (4 .2)  and 

(4 .4)  must be considered separately (since these give $mn = $,, or $mn = -Gmn) .  
Thus after a lengthy calculation, we obtain for the general case for which 
tan 6 =I= Na/Mb for any positive integers N and M (and 6 + 0 or in), the value of 
the macroscopic contact angle p as 

2m2 p = ao-$2e2 cot a,, + C .,(bko+da0) 
m - 1  

+ m = 1 n - 1  ( $ + b 1 ( a & , + b a , + 0 2 , , + d k n )  1 , (4 .7)  
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with the contact-line position (to order being given by (2.10) with 

- (m2b2 + n2a2) sin 8 cos 
mnab 

2nmx,* 
-d,, sin __. cos- +a,, cos ___ sin - -em, sin ~ 

1 
- -[ -sinu0 

X Z (n2a2 cos2 0-m2b2 sin2 ,0)-l 

2nmx,* 2nny,* 2nmx,* 2nny,* 
b a b a a 

mnab 
- (m2b2 + n2a2) sin 0 cos 

x sin- 2nny,* + b,, cos 2nmx,* ~ cos2-) b +( b a 

2nmx,* 2nny,* 2nmx,* %my,* 2nmx,* 
cos ~ +dmn cos ___ 

b a 
b,, sin ~ sin -- am, sin ~ 

a b a 

2nny,* 2nmx,* 2nny,*)]] [ $ i o ( a r n n  sin ___ 2nmx,* cos- -cot uo x sin - -em,  cos ~ 

b m - O n -  a b a 

2nny,* 2xmx: 2nny,* 2nmx,* 2nny,* + c,, cos ~ sin - +dmn b 
cos - 

b a 
x sin- + bmn sin ~ 

b a 

2nmx,* cos-)] 2nny,* 
b '  

x cos ___ 
a 

The upper and lower terms that appear in the expressions 

) 
- (m2b2 + n2a2) sin 8 cos 8 

mnab 
mnab 

( ) ' ( - (m2b2 + n2a2) sin 0 cos 8 

are taken according to whether the value of n/m is less than or greater than 
(b la)  tan 8. The quantities x,* and y,* are the values of x* and y* respectively, 
evaluated on the mean contact-line position x = xo, so that 

x,* = x,, cos 8 - y  sine,  y,* = xo sin 8+y cos8. (4.9) 

For the particular situation where tan0 = Na/Mb, with N and M as positive 
integers, the values of $ and g, may be obtained as 

en(N2a2 + M2b2)t 
ab 

2np(N2a2 + M2b2)t xo 
ab 

$=ao- 
P - 1  

2np(N2a2 + M2b2)t xo}] 
ab 

- (m2b2 + n2a2) ' [ $ mnab 

+ O(e2)  (4.10) + (brs + crs)  cos 

91 = 7 (n2a2 cos2 8-m2b2 sin2 8)-l(( 
s1na0 m = o n - o  

2nmx,* 2nny,* 2nmx,* 2nny,* 2nmx,* 
cos ___ +amn cos - sin - -amn sin ___ x ( - c m n  sin ~ 

b a b a a 

2nny,* 2nmx,* mnab 
'OS 2x) b 

+ ( - (m2b2 + n2a2) sin 8 cos 

. 2nmx,* 2nny,* 2nmx,* 

x sin - + b,, cos ___ 
b a 

cos - +d,, cos - 
b a 

- a,, sin ___ 
a 

p = 1  

2nny,* 2nmx,* 
x sin - - c,, cos ___ 

b a 
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+ x) + (brs - crs) cos 2np 
b 

2nmx,* 2nny,* 2nmx,* 2nny,* 
cos - 

b 
sin ~ + b,, sin ____ -cots,[ m - o n - o  E (a,,sin- a b a 

sin - + d,, cos ~ 2nmx,* cos ?)I’ +em,  cos ~ 
(4.1 1) 

2nmx,* 27cny,* 
b a a 

where r = p M  and s = pN. 

omitted, while the upper and lower terms in 
In  the first double sum in (4.11) values of m and n for which n/m = N / M  are 

) )’ ( - (m2b2 + n2a2) sin 8 cos 8 

are taken according to whether n/m is less than or greater than N I M .  
The solution for the situation where tan 8 = - Na/Mb may be obtained by rotating 

the (x*, y*)-axes through $ 7 ~  and using the above results (4.10) and (4.11). For the 
special case 8 = 0, the values of /3 and g1 are 

- (m2b2 + n2a2) sin 8 cos 8 mnab ( mnab 

(4.12) 
2nm 2nmx0 2nmx0 

/3 = a,-€ X --(bmo cos- -amo sin - 
m - 1  a a a 

b O0 2nmx, 2nny 2nmx0 2nny 
cos - 

b 
sin - -dmn sin - g1 = am=, 1 , E = ;(--cmnsin- a b a 

27cmx0 2nny 2nmx, 
sin ___ + b,, cos - 

b a 
+amn cos - 

a 

w m  2nmx, 2nny 2xmx, 2xny 
-on-0 a b a 

cos __ 
b 

-cots,[: x (amnsin-sin- + b,, sin - 

27cmx, 2nny 
sin - +d,, cos - +c,, cos - 

b a a 
(4.13) 

while the values for B = $X may be obtained by rotating the (5, y) axes through an 
angle of tn. We now examine, in greater detail, two specific examples of spreading 
on a surface of the form (4.2). 

Example (i). If a = b and if the dimensionless surface elevation g contains only one 
Fourier coefficient, so that 

y = A sin ~ sin - , (4.14) 

then the value of the macroscopic contact angle (determined by (4.7), (4.10) and 4.12)) 
on such a surface is 

2nx* 2ny* 
a a 

X2A2 
a2 

p = a,-e2---cot a,+O(e3) (0 < B < in), (4.15) 

2/2nA 2 4 2 ~ 2 ,  
/3 = ao-e- a sin ___ a + O ( E 2 )  (8 = in), (4.16) 

4xx 
sin a, a 

cos o} +O(e3)  (0 = 0). (4.17) 
1 p = a,+ T{cot E 2 7 P A 2  a0(2 cos 
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t y *  + -\- + -.: -+- - - + - - +  

FIGURE 8. For spreading on a solid surface with dimensionless elevation 5 given by (4.14), the 
contact-line positions (projected in the (z*, y*)-plane) at which advancing jumps occur are shown 
by the continuous lines while those a t  which receding jumps occur are shown by broken lines. eA/a 
has been chosen to be 0.025, while the microscopic contact angle a, has been taken to be 30'. The 
liquid side of the contact lines is to the lower left. 

The term O(e2) in (4.17), while not being given by (4.12), was derived using (3.14). 
The contact-line position given by (4.8), (4.11) and (4.13) is found to be 

2nx; 2nx; ,,,-.> 2ny* ' 
( c o s y f i i n -  2ny,* + sin 26 sin - 

sin a, cos 26 a a a 

- cot a, sin - 2nx,* sin=] +O(e2)  (0 < 0 < in), (4.18) 

(4.19) 

x = xo+eA 

a U 

x = x,-EA cot a, sin - sin - 2ny,* +O(e2)  (6 = an), 2nx: 
a a 

2nx: . 2ny,* 
cos - sin - -cot a. sin ~ sin - 

sin a, U U a 
(4.20) 

Thus we observe that for spreading on this surface the following hold. 

B = - an), for which there is hysteresis of this order with advancing contact angle 
(a)  There is no contact-angle hysteresis of order e+l  except for 6 =in (and 

d2nA 
a 

2nA 
a 

pa = a()+€- 

pr = a,-€-. 

and receding contact angle 

(4.21) 

(4.22) 

For 0 = in, stick-jump behaviour occurs, with the jumps a t  x, = $z/&($+ 2r) for an 
advancing contact line and a t  x, = $d/($+2r)  for a receding contact line (where r 
is any integer). The exact position of the contact lines (to order e+l )  a t  which these 
jumps occur (determined by (4.19)) are shown in figure 8. It is seen that the existance 
of hysteresis for 6 = in is due to the uneven ridges and valleys in the surface, which 
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Y*  

17 

b 
I I I - 

X *  
-:a 0 t a  

FIGURE 9. Other contact-line positions (projected in the (x*, y*)-plane) for the case shown in figure 
8 (i.e. 5 given by (4.14) with EA/a = 0.025 and a, = 3 0 O ) .  The continuous lines are for 0 = 30' (with 
x,/a = 0, $1 /3  and jd3) and the broken lines for 0 = Oo, (with x,/a = 0, t and a). The liquid side 
of the contact lines is to the left. 

run parallel to  the mean contact line when 8 = in. It is also observed from (4.17) that 
there is also contact-angle hysteresis for 8 = 0 (and also for 8 = an) but that  this 
hysteresis is much smaller, being of order s2. 

( b )  When there is no contact-angle hysteresis (i.e. when 0 < 8 < an) the macroscopic 
contact angle is less than or greater than uo according to whether a, is less than or 
greater than in. Such behaviour was also noted for the parallel grooved surface 
considered in $3 for 8 =k 0. 

(c) From the contact-line positions (correct to order e + l )  given by (4.18) and shown 
in figure 9, i t  is observed that for uo < 90' the positions of maximum contact-line 
advance tend to  occur where surface elevation 5 is a minimum and/or where surface 
upslope a[/ax is a maximum. This is the same as observed for the parallel grooved 
surface. 

Example (ii). If a = b and if the surface elevation g is given by the double Fourier 

(4.23) 
sine series 

0 3 0 3  2nmx* 2nny* g =  Z Z amn sin-sin-, 
r n - 1  n - 1  a a 

where in the area 0 < x* < ?gL, 0 < y* < ?gL, i t  represents the function 

Ax*(?gL-x*)y*(?gL- y*) 

(+a)* 
6 =  

then the Fourier coefficients amn may be determined, and we obtain 

(4.24) 

2n(2r+ l ) x *  2n(2s+ 1) y* g = -  Z Z (2r+1)-3(2s+1)-3sin sin . (4.25) 
1024A co 

n6 r-0s-0 a U 
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This surface is superficially similar to that given by (4.14) (with both having 
maximum and minimum values of + A  occurring a t  the same places), except that 
an infinite number of Fourier coefficients are now present. For spreading on this 
surface (4.25), the macroscopic contact angle /3 is found to be 

2 s +  1 
cot a, + O(e3) if tan 8 =k - 

2 R + 1 '  
512A2 
45a2 

p = a 0 - E 2 -  (4.26) 

2048A[(2R+ 1)2 + (2S+ 1)"]1- - 
x 0 ( x o - - ~ )  (do- 1) ( 2 $ - X o - 8 )  

15a(2R+ 1)3 (2S+ 1)3 
p=a,+E 

(4.27) 
2 s +  1 

if t a n 8  = - 
2 ~ + 1  

where do = [(2R+ 1)2+ (2S+ 1)2]4x,/a, (4.28) 

and R and S are integers 2 0. 
The result (4.27) is valid only for 0 < d < 1, the value of /3 outside of this range 

being determined by the fact that /3 is a periodic function of do with period unity. 
In  addition the contact-line position to order e+l  is, for tan8  =k (2S+ 1)/(2R+ l), 

m m  

x = r , + e [  1024A x (2r+1)-3(2s+1)-3{(2s+1)2 cos2 8-(2r+1)2 sin28}-' 
n6 sin aOr-os-o 

-[(2r+1)2+(2s+1)2] sin8cosB 2 ~ ( 2 r + l ) ~ , *  2 ~ ( 2 s + l ) y , *  
sin 

a a 
) cos 

(2r+ 1) (2s+ 1) 

2n(2s+ a yY cos 
(2r+ 1) (2s+ 1) ) sin 2n(2r+ 1) x,* 

- (- [(2r+ 1)2+ (2s+ 1 1 2 1  sin 8 cos 8 a 

-~ m c o  2n(2r+l)x,* sin2r(2e+l)y,*] 
9 a a 

1024A cot a, x x (2r+ 11-3 (2s+ 11-3 sin 
n6 r - 0 s - o  

(4.29) 
where the upper and lower terms are taken according to whether (2s+ 1)/(2r+ 1) is 
less than or greater than tan 8. Should tan 8 = (2X+ 1)/(2R+ l ) ,  where R and S are 
integers, then the expression (4.29) may still be used except that terms for which 
(2s+ 1)/(2r+ 1) = tan 8 are omitted from the first double summation and in their 
place an additional term 

2XP m 

e [== (2R + 1)-3 (2X+ 1)-3 x pP6  sin - { - (2R + 1) x,* + (2S+ 1) y;}] 
a n6 sina, P-1 

is added. It is noted that the above results are qualitatively similar to those for 
example (i) except that there are now an infinite number of contact-line orientations 
for which there is contact-angle hysteresis, these orientations being determined by 

2 s +  1 6 = tan-l- 
2R+1 '  

(4.30) 

where R and S are integers 2 0. In  general it  seems that the number of values of 
8 for which hysteresis occurs is determined by the number of non-zero Fourier 
coefficients present in (4.1). From (4.27) it is observed that for any value of 8 
satisfying (4.30) the contact angle /3 oscillates as xo is increased (see figure 10) yielding 
an advancing contact angle of 

EA [(2R+1)2+(2S+1)2]4 
a (2R+ 1)3 (2S+ 1)3 

p, = O L ~  + - K (4.31) 
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FIGURE 10. Value of 

(/3-a,)(2R+1)3(2S+1)3 - [ (2R+1)2+(2S+1)2]~  = 2048z(z+t)(E--l)(z”--z--t) I“,“ 15 
as a function of Z for 0 < I < 1 (see (4.27)). 

and a receding contact angle of 
EA [(2R+ 1)2+ (2S+ 1)2]4 
a (2R+1)3(2S+l)3 ’ Pr = a,- -K 

where (3 + 1/30) [&( 15 - 21/30)]+ = 3.3394. 
1024 K = -  
675 

(4.32) 

(4.33) 

Values of 6, Pa and Pr are given for various values of R and S in table 1. Thus it is 
seen that while there is an infinite number of values of 6 satisfying (4.30) in any small 
interval, the magnitude Pa -Pr of the contact-angle hysteresis decreases very rapidly 
as R and S are increased. Thus the major effect of hysteresis will occur where the 
contact-line orientation is 6 = k$r. 

For an advancing contact line with 3 satisfying (4.30) the forward jumps of the 
contact line occur at 

(4.34) 

(4.35) 

z, = ++[&(15-21/30)]i+n’ = 0.75955+n’, 

2, = +-[&(15-21/30)]t+n’ = 0.24034+n’, 

while for a receding contact line, jumps occur a t  

where z, is defined by (4.28) and n’ is any integer. 
These contact line positions are shown in figure 11. It is observed that the angles 

given by (4.30) for which contact-angle hysteresis occurs are precisely those for which 
surface roughness is periodic along the contact line (with period 
[(2R+ 1)2+ (25+ 1 ) 2 ] ~ a ) .  The values of this period together with the distance 
a[(2R+ 1)2+ (2S+ 1)2]-4 over which the contact line jumps occur are shown in table 1 .  

It may be noted in both examples (i) and (ii) that as 6 approaches a value for which 
there is contact-angle hysteresis (at order e+l), the amplitude of the contact-line 
waviness tends to infinity. A similar result was obtained for the parallel grooved 
surface in $3. 
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e 
given by 

(4.30) 

45' 
18.43' 
11.31' 
8.13' 
6.34' 
5.19' 
4.40' 
3.81° 
3.37' 
3.01' 
2.73' 

(A -PA1 
€ A  
a 

derived by 
(4.31) 

and (4.32) 

9.445 
0.7822 
0.2724 
0.1377 
0.08296 
0.05542 
0.03964 
0.02975 
0.023 15 
0.01853 
0.015 16 

- 

Periodla SIa 
= [(2R + 1)2 derived by AE,*/euA sin a, 
+ (2S+ l)a]k (4.28) given by (6.11) 

1.414 
3.162 
5.099 
7.071 
9.055 

1 1.045 
13.04 
15.03 
17.03 
19.03 
21.02 

0.707 1 
0.3162 
0.196 1 
0.1414 
0.1104 
0.09054 
0.076 70 
0.06652 
0.05872 
0.05256 
0.04757 

3.339 
0.1237 
0.02672 
0.009736 
0.004581 
0.002509 
0.001 520 
0.0009895 
0.0006797 
0.0004869 
0.000 3606 

Included in (0 ,O)  
30.96' 0.01 154 5.831 
23.20° 0.005492 7.616 
Included in (0 , l )  
15.26' 0.002 119 11.40 
12.99' 0.001 502 13.34 
Included in (0,2) 

0.1715 O.OO0 989 5 
0.131 3 0.000 3606 

0.087 71 0.000092 92 
0.074 95 0.00005630 

Included in ( 0 , O )  
35.54O 0.001 340 8.602 0.1162 0.000077 89 

TABLE 1. Details of contact-line jumps for spreading on a solid surface with elevation given by 
(4.25). For each (R, 8) values are given of the contact line orientation 8, the dimensionless 
contact-angle hysteresis (/la -/3,)/(eA/a), the dimensionless periodicity along the contact line, the 
dimensionless jump distance Sla and the dimensionless energy release per jump AE,*/(euA sin a,). 

5. General rough surfaces 
To investigate to what extent the results obtained in $43 and 4 apply to spreading 

on a solid surface with a more general variation of surface elevation 5, we will first 
express in an alternative form the value of the macroscopic contact angle p given 
by (3.14) for a surface with periodicity along the contact line (with 5 given by (3.1)). 
The Fourier coefficients p,(x), p,(z) in (3.14) may be obtained from (3.1) as 
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FIGURE 11. For spreading on a solid surface with dimensionless elevation 5 given by (4.25), the 
contact-line positions (projected in the (z*, y*)-plane) at which advancing jumps occur are shown 
by the continuous lines while those a t  which receding jumps occur are shown by broken lines. eA/a  
has been chosen to be 0.025 with a. = 30' (as for the situation shown in figure 8). For the curves 
denoted by (a), (R, S) = (0, 0), while for ( b ) ,  (R, S )  = (0, 1) and for (c), (R, S) = (0, 2). 

Then, by direct substitution of these values, we obtain 

where the summation has been done using the result 
a0 

n - i  
x cos nh = -i+mY(h) ( - x  < h < x ) .  

(5.2) 

(5.3) 

The bar over symbols in (5.2) denotes the average value with respect to y over one 
period on the mean contact line x = xo. In  a similar manner the various other terms 
appearing in (3.14) may be obtained as 



22 R. G.  Cox 

where h(u, xo) is the surface-slope correlation 

I n  deriving (5.7), we have made use of the result 

(5.9) 
cos n.h 
-= -In (2lsin tA l )  (-K < h < K). 

n-I 

Substituting the values given by (5.2) and (5.4)-(5.7) into (3.14) we obtain an 
alternative expression for the macroscopic contact angle as 

- - 
ag @ 2 a2c ac 

ax ax2 [z (ax ax) +cotao~--+cotao  p = ao-e- +e2 1 cot a. - - - 

+ +O(e3) ,  (5.10) 

where all quantitites are evaluated on the mean contact-line position x = 2,. In  order 
to determine the value of p h r  a rough solid surface that does not show any periodicity 
along the contact line, we shall consider the limit of the period b tending to infinity. 
Thus it is necessary to obtain the asymptotic form for b+ 00 of the integral 

appearing in (5.10). 
For this purpose, we define a new slope-correlation function h*(u, xo) as 

which may be written alternatively as - 
h*(u, x,) = h(u, 2,)- - (3 

By direct substitution of h*(u, xo), we may show that 

h*(u, x,) du = 0,  l::: 
while, by contour integration, we obtain 

In ( 2  1 sin ?I) du = 0. 

In  addition, it follows from the definition (5.12) that 

h*( -u, x,) = h*( +u, x,). 

(5.11) 

(5.12) 

(5.13) 

(5.14) 

(5.16) 

The integral 1 in (5.11) may now be manipulated using the results (5.13)-(5.16) to 
give 

1 = Z A r h * ( u ,  ax0 0 x o ) l n ( ~ s i n ~ ) d u ,  (5.17) 

which in the limit of b+ 00 gives 

h*(u, x,) In u du. 
b + m  

(5.18) 
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It has been assumed here that as u+ co, the slope correlation h*(u, x,) tends to zero 
sufficiently fast to make the integral in (5.18) convergent. Assuming that this is the 
case, then for a general rough surface with no periodicity along the mean contact line, 
the results (5.10) for the macroscopic contact angle /3 reduces to 

- 

1 ac 1 
-;Z cot a,(%) + --F--”S- h*(u, x )  In udu  +O(e3) ,  (5.19) x sin aoax , 

where all quantities are evaluated a t  the mean contact-line position x = x,. It may 
be shown that 

so that (5.19) may be written as 

1 + ---j i . a  - h*(u, x )  lnudu + O ( e 2 ) .  (5.20) 
.n sin a,ax 

Should the solid surface be homogeneous - _  in the sense that statistical properties of 
5 are independent of position (i.e. c, and h*(u, x )  are independent of x )  then p is 
given by 

p = ao-e2i cot a, {(g + o‘), (5.21) 

which, being independent of xo, indicates no contact-angle hysteresis for spreading 
on such a surface. However, care must be used in interpreting this result since this 
lack of contact-angle hysteresis may result from the implicit assumption used in the 
theory that the deviation of the contact line from its mean straight-line position is 
everywhere very much smaller than the roughness wavelength. This assumption was 
necessary in order to make Taylor expansions of the boundary conditions. Further 
investigation is required to resolve the question as to whether the removal of this 
assumption results in the prediction of contact-angle hysteresis. It is noted, however, 
that the surface roughness causes, on the basis of the present theory, a change of 
contact angle from the value a. by an amount O(e2) ,  with p being smaller or larger 
than a, according to whether a, is less than or greater than in. 

6. Comparison with Wenzel’s equation 
If, for the spreading of a liquid on a rough solid surface, it is assumed that there 

is no contact-angle hyderesis, so that the macroscopic contact angle, p* say, is a 
constant, then it has been shown by Wenzel (1936) that p* is related to a, by the 

A relation 
cos p* = S c o s  ao, (6.1) 

A,  
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where A, is the actual area of the solid surface and A,  its projected area on the 
(2, y)-plane. This relation was derived by considering a small advance of the liquid 
interface and by equating the work done by the liquid-air interfacial tension to the 
increase of surface energy of the system. For rough surfaces with small slope angles 
of order B considered in this paper this result (6.1) takes the form 

where the angle brackets ( ) denote an area average. For a homogeneous general 
random surface this result is identical with (5.21). In  addition (6.2) may also be shown 
to agree with the value of p given by (3.20) for a parallel grooved surface (with 8 =+ 0) 
and with the value of p given by (4.7) for a doubly periodic surface (for which 
tan 8 =+ Nu/Mb and 8 =+ 0, &). Thus in ail cases we have considered for which there 
is no contact-angle hysteresis, the results obtained agree, as they should, with 
Wenzel’s equation (6.1). However, when hysteresis is predicted, the values of the 
advancing and receding contact angles will be different from the value of p* given 
by (6.1). Thus for an advancing contact angle of pa, if the contact line (over a given 
part of its length) advances over a projected area A ,  then the work done by the 
interfacial tension B of the liquid-air interface is - aA, cos pa. The corresponding 
increase in the surface energy of the system is then (asL - gSA) As, where usL and aSA 
are respectively the surface energies per unit area of the solid-liquid and solid-air 
interfaces. The excess work AEa done on the system is thus 

AEa = -vA, cos p a - ( g s L - ~ s A )  As. 

0 = - BA, COB p* - ( ~ S L  - B s A )  As. (6.4) 

Thus AEa = gAp (COS p* - cos pa), (6.5) 

(6.3) 

When there is no hysteresis, so that the contact angle is p* given by (6.1), the value 
of AEa is zero, whence 

which being strictly positive implies that pa > p*. Similarly for a receding contact 
line the excess work AE, done is 

(6.6) 

where pr is the receding contact angle. This quantity AE, being strictly positive 
implies that p* > pr. For rough surfaces of small slope angle E ,  since the values of 
p*, pa, pr and a. only differ by a small amount, (6.5) and (6.6) may be written as 

AEr = ~A,(cos  P,-COS /I*), 

AEa = aA,(P,-p*) sin uo, 

AE, = aA,(P* -p,) sin ao. 

For both advancing and receding contact lines, this excess energy AE is lost during 
the jumping of the contact line, which is a dynamic process in which the motion of 
the liquid is important. Thus this energy may be (i) radiated away as a capillary wave 
along the liquid-air surface and/or (ii) converted to heat by viscous dissipation in 
the liquid (see Huh & Mason 1977~) .  If the length of a contact-line jump is 6 then 
the energy AE* released per unit length of contact line in a single jump is, for an 
advancing contact line, 

and, for a receding contact line, 

AE,* = uS(pa-p*) sin uo, 

AE,* = ~ S ( p * - p , )  sin ao. (6.10) 
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As an example, consider the doubly periodic surface described by (4.23) and (4.24) 
(i.e. example (ii) of $4) with tan B = (2S+ 1)/(2R+ l ) ,  so that there is contact-angle 
hysteresis. Then from the results (4.31)-(4.33), it is seen that 

EVA sin a, 
( 2 ~ +  113 ( 2 s +  1 1 3 '  

AE,* = AE,* = 3.3394 (6.11) 

The value of this amount of energy released in a jump (listed in table 1 )  very rapidly 
decreases as the values of the integers R and S are increased. 

7. Conclusions 
For the slow spreading of a liquid on a solid surface, we have investigated the effect 

that roughness of the surface has on the macroscopic contact angle. In  order to do 
this, it was assumed that (i) the value of the microscopic contact angle a, was 
everywhere constant and (ii) the characteristic slope of the surface roughness 8 was 
small. 

It was found for spreading on a parallel grooved surface with the contact line 
parallel to the grooves that the macroscopic contact angle would oscillate by an 
amount of order E as the contact line advanced. This indicates that contact-angle 
hysteresis (of order 8) and stick-jump behaviour of the contact line can be expected. 
However, for contact lines in all other directions, no such phenomenon occurs, so that 
no hysteresis or stick-jump behaviour would be evident. Thus it would be expected 
that an expanding drop on a parallel grooved surface would not be able to spread 
so well in the direction perpendicular to the grooves (where the contact line is parallel 
to the groove direction). Hence the drop perimeter will be flattened a t  such positions. 
In fact, drops of such a shape have been observed on parallel grooved surfaces by 
Oliver et al. (1977). 

For spreading on a doubly periodic rough surface there are in general an infinite 
number of contact-line directions (with 0 = tan-'(Na/Mb), where N and M are 
integers) for which there is contact-angle hysteresis (of order B )  with all other 
contact-line directions showing no hysteresis at all. The larger the values of N and 
M, the smaller will be the corresponding contact-angle hysteresis. However, for 
special doubly periodic surfaces for which the number of Fourier coefficients is finite, 
the number of contact-line orientations for which there is hysteresis is also finite. 

For the above examples it was observed that for any given equilibrium position 
of the contact line the positions of maximum contact-line advance tend to occur in 
regions where the surface elevation is a minimum (for a, < in) and/or the regions 
where the surface upslope (from liquid to air) normal to the contact line is a 
maximum. 

By considering a periodic rough surface and letting its period tend to infinity, we 
obtained results for spreading on a general non-periodic rough surface. These 
indicated no contact-angle hysteresis on such a surface. However, this conclusion may 
merely result from an implicit assumption made in the theory that the deviation of 
the contact line from its mean straight-line position is everywhere very much smaller 
than the roughness wavelength. Thus, while contact-angle hysteresis is predicted (at 
least for some contact-line orientations) for spreading on periodic surfaces, the 
existence and nature of possible hysteresis on more general surface roughness has yet 
to be established. 

It was noted that in all cases where there was no contact-angle hysteresis, the value 
of the predicted macroscopic contact angle was different from a, by an amount which 
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is determined by Wenzel’s (1936) equation. For situations where there is contact-angle 
hysteresis, the amount of energy liberated during a single contact-line jump was 
calculated. 

While in this paper we have, for convenience, considered the movement of a 
liquid-air interface across a rough solid surface, all results will of course apply to the 
movement of any liquid-fluid interface across a rough solid surface. 

Finally it should be pointed out that ,  for a drop of volume R3 resting on a rough 
surface, a change in macroscopic contact angle of order s (corresponding to the 
possible variations in p due to hysteresis, as predicted for the doubly periodic rough 
surface) would cause a change in contact-line position of order sR. For many possible 
equilibrium positions to exist, there must be many roughness wavelengths in this 
distance sR (since for any p, the distance between equilibrium contact-line positions 
is of the order of the roughness wavelength). Thus for many possible equilibrium 
positions of the drop, we require 

eR 9 E .  17.11 

As mentioned in $1, this condition was violated by Huh &, Mason (1977a), who 
considered e+O with 1/R fixed. This explains why they failed to obtain multiple 
equilibrium positions. 

This work was supported by the National Sciences and Engineering Research 
Council of Canada under Grant A7007. 
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